A

‘.
o

™

Chapter 15
Eile Input/Output



http://2008.igem.org/Image:Pictogram_input.png
http://2008.igem.org/Image:Pictogram_input.png
http://2008.igem.org/Image:Pictogram_output.png
http://2008.igem.org/Image:Pictogram_output.png

™~

Standard File Pointers @;TDAE

Assigned to console unless redirected

Standard input = stdin
e Used by scan function
e Can be redirected: cmd < input-file

Standard output = stdout

e Used by printf function

e Can be redirected: cmd > output-file
Standard error = stderr

e Can be specified in fputs function instead of stdout
e Can be redirected: cmd 2> output-file




Files

A collection of related data treated as a unit

Two types

e Text

e Binary

Stored in secondary storage devices

Buffer

e Temporary storage area that holds data while they are
being transferred to or from memory.




Text Files

Data is mainly stored as human-readable characters

Each line of data ends with a newline character

e J = \n
Cobbob06060606
DA222222222
F333333333
B444444444
G555555555
F111111111
H7 77777777
D888888888
1999999999

20
50
45
50
30
40
40
40
45

8.55¢
12.5¢
8.5¢
9

6<

10
12
11.11¢
15




User Flle Steps $#include <stdio.h>

Declare a file pointer variable
* Program connection to external user file

Open the file

 Creates a structure to store information needed for
processing file and buffer area(s)

e Makes file pointer connection to structure

Use functions for input and/or output

e Handles movement of data between program and buffer
and between buffer and external device

Close the file
* Writes the buffer to file if necessary
* Frees up memory associated with file




1. File Pointer Declaration

FILE * variable—-name-list;
Defines variables of type FILE*, file pointer

Pointer is undefined unless initialized
e |f not initialized to another value, initialize to NULL

Examples:
FILE * =cores in = NULL; // Input file
FILE * =zcores out = NULL; // Cutput file

Following slides will use f£p for file pointer




2. fopen

FILE * fopen(char * filename, char * mode)

Parameters

e filename — string that supplies the name of the file as
known to the external world
Default path is current directory

| mode

Meaning

r

Open file for reading
. If file exists, the marker is positioned at beginning
. If file does not exist, error returned

Open text file for writing
. If file exists, it is emptied
. If file does not exist, it is created

Open text file for append
. If file exists, the marker is positioned at the end
. If file does not exist, it is created




fopen
FILE * fopen(char * filename, char * mode)

Return
e |f successful, file pointer
e |f not successful, NULL

* Always check return

If not successful, print error message and exit
or some other corrective action




fopen

FILE * fopen(char * filename, char * mode)

= Examples

/f Define and then open scores.txt for input
FILE * scores in = NULL;

scores in = fopen("scores.txt"™, "r");

if (scores in == HNULL) {
printf ("Unable to open scores.txti\n");
exit(l);

}

S/ Define and open newscores.txt for output

FILE * scores out = fopen ("newscores.txt", "w");
if (scores out == NUOLL) {
printf ("Unable to open newscores.txt\n"™):
exit(l);




4. fclose

int fclose (FILE *fp)
Used to close a file when no longer needed
Prevents associated file from being accessed again

Guarantees that data stored in the stream buffer is
written to the file

Releases the FILE structure so that it can be used with
another file

Frees system resources, such as buffer space
Returns zero on success, or EOF on failure




fclose

Examples:

fclose (scores in);
fclose (scores out);

To go back to beginning without fclose then fopen:
void rewind (FILE *fp)




3. Input/Output Functions

Formatted Input
e fscanf

Formatted Output
e fprintf

String Input

o fgets

String Output

e fputs




~

Formatted Input Functions E('

Read and convert a stream of characters and store the
converted values in a list of variables found in the
address list
scanf
scanf ("format string", address 1list);
* Reads text data from standard input
fscanf
fscanf (fp, "format string", address list);
e Reads input from the specified file

fzcanf (scores in, "3d", &=score):;



http://2008.igem.org/Image:Pictogram_input.png
http://2008.igem.org/Image:Pictogram_input.png

Formatted Output Functions E')

Displays output in human readable form

printf

printf ("format string", wvalue list);
e Writes to standard output or standard error file
fprintf

fprintf (fp, "format string", wvalue list);
e Writes to the specified file

fprintf (scores out, "d\n", =score);



http://2008.igem.org/Image:Pictogram_output.png
http://2008.igem.org/Image:Pictogram_output.png

String Input

Reminder: Watch size of string

e Must be large enough to hold largest input string
Plus \n perhaps
Plus \O perhaps

e C generally gives no warning of this issue
char input string[MaX INPUT LENGTH+Z]:

Standard Input
e getchar: Read one character and return value as int
int getchar()

o gets(): Read line & convert \n to \0, no size check
char *gets (char *strPtr)

~

-«



http://2008.igem.org/Image:Pictogram_input.png
http://2008.igem.org/Image:Pictogram_input.png

~

String Input: fgets - €

char *fgets (char * strPtr, int size, FILE *fp)

* Inputs characters from the specified file pointer
through \n or until specifed size is reached

o Puts newline (\n) in the string if size not reached!!!
* Appends \0 at the end of the string

e If successful, returns the string & places in argument

const int MAX LINE = 100;

char line in[MAX LINE + 2];

int line len;

FILE * text in = fopen|("data.txt", "r");
'/ Should al=soc check open return
fgets(line in, MAX LINE, text in):

"/ Check for \n

line len = strlen(line in};

if {(line in[line len-1] == "\n')

line in[line len-1] = '\0'; <//



http://2008.igem.org/Image:Pictogram_input.png
http://2008.igem.org/Image:Pictogram_input.png

String Output

Standard Output

e putchar: Write one character
int putchar (int outChar)

* puts(): Write line & converting \0 to \n
int puts (const char *strPtr)

Output 9



http://2008.igem.org/Image:Pictogram_output.png
http://2008.igem.org/Image:Pictogram_output.png

String Output: fputs E—)

int fputs (const char *strPtr, FILE *fp)

* Takes a null-terminated string from memory and writes
it to the specified file pointer

* Drops \0

* Programmer's responsibility: Make sure the newline is
present at the appropriate place(s)

char line out[1l00] = "Hello!'\n™:
FILE * m=agFile = fopen("hello.txt™, "w");
fputs(line out, msgFile):;



http://2008.igem.org/Image:Pictogram_output.png
http://2008.igem.org/Image:Pictogram_output.png

End of File Controlled Loops

feof
int feof (FILE *fp)

e Function to check if end of file has been reached.

* For an end of file controlled loop
Read before the loop
Test for end of file: while (!feof (fp))
Inside loop:
Process
Read at the bottom of the loop




Programming in C

ofs IR
L 4 File Input/Output




