
1

Programming in C

Input Output

http://2008.igem.org/Image:Pictogram_input.png
http://2008.igem.org/Image:Pictogram_input.png
http://2008.igem.org/Image:Pictogram_output.png
http://2008.igem.org/Image:Pictogram_output.png

2

Standard File Pointers
 Assigned to console unless redirected

 Standard input = stdin
 Used by scan function
 Can be redirected: cmd < input-file

 Standard output = stdout
 Used by printf function
 Can be redirected: cmd > output-file

 Standard error = stderr
 Can be specified in fputs function instead of stdout
 Can be redirected: cmd 2> output-file

3

Files
 A collection of related data treated as a unit

 Two types
 Text
 Binary

 Stored in secondary storage devices

 Buffer
 Temporary storage area that holds data while they are

being transferred to or from memory.

4

Text Files
 Data is mainly stored as human-readable characters

 Each line of data ends with a newline character
  = \n

C666666666 20 8.55

A222222222 50 12.5

F333333333 45 8.5

B444444444 50 9

G555555555 30 6

E111111111 40 10

H777777777 40 12

D888888888 40 11.11

I999999999 45 15

5

User File Steps
1. Declare a file pointer variable

 Program connection to external user file

2. Open the file
 Creates a structure to store information needed for

processing file and buffer area(s)
 Makes file pointer connection to structure

3. Use functions for input and/or output
 Handles movement of data between program and buffer

and between buffer and external device

4. Close the file
 Writes the buffer to file if necessary
 Frees up memory associated with file

6

1. File Pointer Declaration
FILE * variable-name-list;

 Defines variables of type FILE*, file pointer

 Pointer is undefined unless initialized

 If not initialized to another value, initialize to NULL

 Examples:

 Following slides will use fp for file pointer

7

2. fopen
FILE * fopen(char * filename, char * mode)

 Parameters

 filename – string that supplies the name of the file as
known to the external world
 Default path is current directory

 mode Meaning

r Open file for reading

• If file exists, the marker is positioned at beginning

• If file does not exist, error returned

w Open text file for writing

• If file exists, it is emptied

• If file does not exist, it is created

a Open text file for append

• If file exists, the marker is positioned at the end

• If file does not exist, it is created

8

fopen
FILE * fopen(char * filename, char * mode)

 Return

 If successful, file pointer

 If not successful, NULL

 Always check return
 If not successful, print error message and exit

or some other corrective action

9

fopen
FILE * fopen(char * filename, char * mode)

 Examples

10

4. fclose
int fclose(FILE *fp)

 Used to close a file when no longer needed

 Prevents associated file from being accessed again

 Guarantees that data stored in the stream buffer is
written to the file

 Releases the FILE structure so that it can be used with
another file

 Frees system resources, such as buffer space

 Returns zero on success, or EOF on failure

11

fclose
 Examples:

 To go back to beginning without fclose then fopen:
void rewind(FILE *fp)

12

3. Input/Output Functions
 Formatted Input

 fscanf

 Formatted Output

 fprintf

 String Input

 fgets

 String Output

 fputs

13

Formatted Input Functions
 Read and convert a stream of characters and store the

converted values in a list of variables found in the
address list

 scanf
scanf("format string", address list);

 Reads text data from standard input

 fscanf
fscanf(fp, "format string", address list);

 Reads input from the specified file

Input

http://2008.igem.org/Image:Pictogram_input.png
http://2008.igem.org/Image:Pictogram_input.png

14

Formatted Output Functions
 Displays output in human readable form

 printf
printf("format string", value list);

 Writes to standard output or standard error file

 fprintf
fprintf (fp, "format string", value list);

 Writes to the specified file

Output

http://2008.igem.org/Image:Pictogram_output.png
http://2008.igem.org/Image:Pictogram_output.png

15

String Input
 Reminder: Watch size of string

 Must be large enough to hold largest input string
 Plus \n perhaps

 Plus \0 perhaps

 C generally gives no warning of this issue

 Standard Input
 getchar: Read one character and return value as int

int getchar()

 gets(): Read line & convert \n to \0, no size check
char *gets (char *strPtr)

Input

http://2008.igem.org/Image:Pictogram_input.png
http://2008.igem.org/Image:Pictogram_input.png

16

String Input: fgets
char *fgets (char * strPtr, int size, FILE *fp)

 Inputs characters from the specified file pointer
through \n or until specifed size is reached

 Puts newline (\n) in the string if size not reached!!!

 Appends \0 at the end of the string

 If successful, returns the string & places in argument

Input

http://2008.igem.org/Image:Pictogram_input.png
http://2008.igem.org/Image:Pictogram_input.png

17

String Output
 Standard Output

 putchar: Write one character

int putchar(int outChar)

 puts(): Write line & converting \0 to \n
int puts (const char *strPtr)

Output

http://2008.igem.org/Image:Pictogram_output.png
http://2008.igem.org/Image:Pictogram_output.png

18

String Output: fputs
int fputs (const char *strPtr, FILE *fp)

 Takes a null-terminated string from memory and writes
it to the specified file pointer

 Drops \0

 Programmer's responsibility: Make sure the newline is
present at the appropriate place(s)

Output

http://2008.igem.org/Image:Pictogram_output.png
http://2008.igem.org/Image:Pictogram_output.png

19

End of File Controlled Loops
 feof

int feof(FILE *fp)

 Function to check if end of file has been reached.

 For an end of file controlled loop
 Read before the loop

 Test for end of file: while (!feof(fp))

 Inside loop:

 Process

 Read at the bottom of the loop

20

Programming in C

T H E E N D

