
1

Programming in C

Input Output

http://2008.igem.org/Image:Pictogram_input.png
http://2008.igem.org/Image:Pictogram_input.png
http://2008.igem.org/Image:Pictogram_output.png
http://2008.igem.org/Image:Pictogram_output.png

2

Standard File Pointers
 Assigned to console unless redirected

 Standard input = stdin
 Used by scan function
 Can be redirected: cmd < input-file

 Standard output = stdout
 Used by printf function
 Can be redirected: cmd > output-file

 Standard error = stderr
 Can be specified in fputs function instead of stdout
 Can be redirected: cmd 2> output-file

3

Files
 A collection of related data treated as a unit

 Two types
 Text
 Binary

 Stored in secondary storage devices

 Buffer
 Temporary storage area that holds data while they are

being transferred to or from memory.

4

Text Files
 Data is mainly stored as human-readable characters

 Each line of data ends with a newline character
 = \n

C666666666 20 8.55

A222222222 50 12.5

F333333333 45 8.5

B444444444 50 9

G555555555 30 6

E111111111 40 10

H777777777 40 12

D888888888 40 11.11

I999999999 45 15

5

User File Steps
1. Declare a file pointer variable

 Program connection to external user file

2. Open the file
 Creates a structure to store information needed for

processing file and buffer area(s)
 Makes file pointer connection to structure

3. Use functions for input and/or output
 Handles movement of data between program and buffer

and between buffer and external device

4. Close the file
 Writes the buffer to file if necessary
 Frees up memory associated with file

6

1. File Pointer Declaration
FILE * variable-name-list;

 Defines variables of type FILE*, file pointer

 Pointer is undefined unless initialized

 If not initialized to another value, initialize to NULL

 Examples:

 Following slides will use fp for file pointer

7

2. fopen
FILE * fopen(char * filename, char * mode)

 Parameters

 filename – string that supplies the name of the file as
known to the external world
 Default path is current directory

 mode Meaning

r Open file for reading

• If file exists, the marker is positioned at beginning

• If file does not exist, error returned

w Open text file for writing

• If file exists, it is emptied

• If file does not exist, it is created

a Open text file for append

• If file exists, the marker is positioned at the end

• If file does not exist, it is created

8

fopen
FILE * fopen(char * filename, char * mode)

 Return

 If successful, file pointer

 If not successful, NULL

 Always check return
 If not successful, print error message and exit

or some other corrective action

9

fopen
FILE * fopen(char * filename, char * mode)

 Examples

10

4. fclose
int fclose(FILE *fp)

 Used to close a file when no longer needed

 Prevents associated file from being accessed again

 Guarantees that data stored in the stream buffer is
written to the file

 Releases the FILE structure so that it can be used with
another file

 Frees system resources, such as buffer space

 Returns zero on success, or EOF on failure

11

fclose
 Examples:

 To go back to beginning without fclose then fopen:
void rewind(FILE *fp)

12

3. Input/Output Functions
 Formatted Input

 fscanf

 Formatted Output

 fprintf

 String Input

 fgets

 String Output

 fputs

13

Formatted Input Functions
 Read and convert a stream of characters and store the

converted values in a list of variables found in the
address list

 scanf
scanf("format string", address list);

 Reads text data from standard input

 fscanf
fscanf(fp, "format string", address list);

 Reads input from the specified file

Input

http://2008.igem.org/Image:Pictogram_input.png
http://2008.igem.org/Image:Pictogram_input.png

14

Formatted Output Functions
 Displays output in human readable form

 printf
printf("format string", value list);

 Writes to standard output or standard error file

 fprintf
fprintf (fp, "format string", value list);

 Writes to the specified file

Output

http://2008.igem.org/Image:Pictogram_output.png
http://2008.igem.org/Image:Pictogram_output.png

15

String Input
 Reminder: Watch size of string

 Must be large enough to hold largest input string
 Plus \n perhaps

 Plus \0 perhaps

 C generally gives no warning of this issue

 Standard Input
 getchar: Read one character and return value as int

int getchar()

 gets(): Read line & convert \n to \0, no size check
char *gets (char *strPtr)

Input

http://2008.igem.org/Image:Pictogram_input.png
http://2008.igem.org/Image:Pictogram_input.png

16

String Input: fgets
char *fgets (char * strPtr, int size, FILE *fp)

 Inputs characters from the specified file pointer
through \n or until specifed size is reached

 Puts newline (\n) in the string if size not reached!!!

 Appends \0 at the end of the string

 If successful, returns the string & places in argument

Input

http://2008.igem.org/Image:Pictogram_input.png
http://2008.igem.org/Image:Pictogram_input.png

17

String Output
 Standard Output

 putchar: Write one character

int putchar(int outChar)

 puts(): Write line & converting \0 to \n
int puts (const char *strPtr)

Output

http://2008.igem.org/Image:Pictogram_output.png
http://2008.igem.org/Image:Pictogram_output.png

18

String Output: fputs
int fputs (const char *strPtr, FILE *fp)

 Takes a null-terminated string from memory and writes
it to the specified file pointer

 Drops \0

 Programmer's responsibility: Make sure the newline is
present at the appropriate place(s)

Output

http://2008.igem.org/Image:Pictogram_output.png
http://2008.igem.org/Image:Pictogram_output.png

19

End of File Controlled Loops
 feof

int feof(FILE *fp)

 Function to check if end of file has been reached.

 For an end of file controlled loop
 Read before the loop

 Test for end of file: while (!feof(fp))

 Inside loop:

 Process

 Read at the bottom of the loop

20

Programming in C

T H E E N D

